Seven Habits of Highly Fraudulent Users – Sift Science Blog

At Sift Science, we analyze a lot of data. We distill fraud signals in real-time from terabytes of data and more than a billion global events per month. Previously, we discovered that the U.S. has more fraud than Nigeria and solved the mystery of Doral, FL. At our “Cats N’ Hacks” Hackathon last week, I decided to put some of our fraud signals to the test. Working with our Machine Learning Engineer, Keren Gu, we discovered some interesting fraud patterns.

Quelle: Seven Habits of Highly Fraudulent Users – Sift Science Blog

Advertisements

Kommentar verfassen

Trage deine Daten unten ein oder klicke ein Icon um dich einzuloggen:

WordPress.com-Logo

Du kommentierst mit Deinem WordPress.com-Konto. Abmelden / Ändern )

Twitter-Bild

Du kommentierst mit Deinem Twitter-Konto. Abmelden / Ändern )

Facebook-Foto

Du kommentierst mit Deinem Facebook-Konto. Abmelden / Ändern )

Google+ Foto

Du kommentierst mit Deinem Google+-Konto. Abmelden / Ändern )

Verbinde mit %s